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inferring interaction network of resistance

markers in cancer cells

We use the recently proposed phixer algorithm [1] on single-cell mRNA expression

data to uncover interaction networks between resistance markers in undrugged cancer

cells. Our results provide novel insights into interactions leading to coordinated rare-cell

expression of resistance markers. We begin by providing an overview of the algorithm

and its implementation on mRNA FISH data.

Problem formulation

Consider a set of n resistant marker genes whose levels in an individual cell are given by

random variables X1, X2, . . ., Xn. These random variables take values in the positive

integers and represent the mRNA counts of corresponding genes as measured by RNA

FISH. Ignoring self edges, a network of n genes contains n(n−1) edges that are directed
from one gene to another. An edge from gene i to k signifies a causal effect of Xi on Xk

that is mediated directly or through unknown factors not measured in the study. Note

that a gene can effect its own, or other gene’s expression indirectly through intermediate

states, creating feedforward and feedback loops in the network.

Most approaches for uncovering gene interactions rely on mutual information or Bayesian

methods that impose restrictions on the inferred network. For instance, Bayesian net-

work approaches assume that there are no cycles (or feedbacks) between genes [2].

Moreover, techniques based on mutual information assume interactions to be undi-

rected, and hence provide no information about causality [2]. Recently, a phixer algo-

rithm was introduced that uses joint observations of random variables X1, X2, . . ., Xn

across samples (cells) to infer directed edges between genes, and also allows the network

1



to contain feedbacks between genes [1]. We briefly discuss this algorithm below and

refer interested readers to [1] for further details.

The phixer algorithm

This algorithm relies on computing φ-mixing coefficients, which can be interpreted as

strengths of the directed edges in the network. More specifically, the φ-mixing coefficient

corresponding to the edge from gene k to i is given by

φ (Xi|Xk) = max
q,p∈{0,1,... }

|P {Xi = q|Xk = p} − P {Xi = q}| , i, k ∈ {1, . . . , n}, i 6= k,

(1)

where P {Xi = q|Xk = p} represents the conditional probability of observing q tran-

scripts for gene i, given that there are p transcripts for gene k. In essence, φ (Xi|Xk)

is the absolute value of the difference between the conditional and unconditional prob-

ability, maximized over all possible values of Xi and Xk.

The φ-mixing coefficient computed in (1) has some useful properties, such as, it is always

bounded φ (Xi|Xk) ∈ [0, 1], and φ (Xi|Xk) = 0 iff Xi and Xk are independent (i.e.,

no connection between genes). Unlike mutual information and Pearson’s correlation

coefficient, the φ-mixing coefficient is asymmetric φ (Xi|Xk) 6= φ (Xk|Xi) and provides

information on the direction of influence. Next, we describe another important property

that plays a key role in “pruning" edges in the network. It involves checking the following

inequality

φ (Xi|Xk) ≤ min {φ (Xi|Xl) , φ (Xl|Xk)} , (2)

for a given gene triplet i, k, and l. If (2) holds, then Xi and Xk are conditionally

independent given Xl, and hence the edge from gene k to i can be removed [1].

The above properties lead to the following phixer algorithm:

1. Start with a network of n genes and n(n− 1) directed edges. Compute φ (Xi|Xk)

using (1) for each edge.
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2. For each gene triplet i, k, j, verify inequality (2). If it holds, then remove edge

from k to i. This is referred to as the pruning step of the algorithm.

3. The edges remaining after checking (2) for all possible gene triplets represents the

inferred network. To account for sampling errors, edges with φ-mixing coefficients

below a selected threshold are also removed.

It turns out that the inferred network is invariant of the order in which the triplets

are checked in the pruning step, and is robust to any monotone transformation of the

data [1]. Note that the inferred edges have direction, but do not have a sign indicating

negative or positive interaction. In principle, once the final network is obtained, a

sign can be assigned to an edge based on positive/negative correlation between the

corresponding pair of genes.

Application to the cancer data set

We use the phixer algorithm to infer gene interactions in melanoma undrugged cancer

cells. RNA FISH was used to measure the expression of housekeeping genes (VGF,

CCNA2, GAPDH), melanocyte-specific genes (SOX10,MITF) and resistance markers

(VEGFC, AXL, JUN, WNT5A, NGFR, SERPINE1, FGFR1, LOXL2, EGFR, NRG1,

PDGFRB, RUNX2, FOSL1, and PDGFC). These measurements provide the number

of mRNA transcripts for each of the 19 genes in single cells with a sample size of ≈ 104

cells. Note that n = 19 genes lead to 19× 18 = 342 directed edges in the network.

To study rare-cell expression of genes, mRNA counts were converted into Bernoulli

random variables, where a gene is either OFF (0) or ON (1) depending on its level

being below or above a threshold, respectively. This transformation of data into binary

values facilitates efficient computation of the φ-mixing coefficients. For a given pair of

genes, the probability difference in (1) is calculated for the four different cases of genes

being ON/OFF, and φ is the maximum value among them. Using this approach, the

φ-mixing coefficients were computed for each of the 342 edges. Interestingly, our results

show that the pruning step of the algorithm removes ≈ 80% of the edges. Removal of
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these edges suggests that coordinated rare-cell expression of many resistance marker

pairs is simply a result of common upstream regulators. Histogram of the φ-mixing

coefficient for all remaining edges after the pruning step are shown in Supplementary

Fig. 19a, and the corresponding inferred network in Supplementary Fig. 19b. For the

sake of visual inspection, we only show the 34 strongest edges in the network. This

corresponds to showing edges with φ ≥ 0.18.

Insights from the inferred networks

The inferred network of resistance markers for undrugged cancer cells is shown in Sup-

plementary Fig. 19b. Here each edge quantifies the effect of an upstream gene on the

probability of a downstream gene being ON. The network highlights the intricate inter-

actions that lead to coordinated rare-cell expression of resistance markers and provides

insights into causal pathways. For example, data shows high odd of rare-cell expression

for NRG1 with many other resistance markers, such as, VEGFC, AXL, JUN, WNT5A

and LOXL2. Our results show that NRG1 is a direct upstream regulator of all these

genes (Supplementary Fig. 19b). In many cases the effect is mediated through multiple

pathways creating feedforward loops. For example, NRG1 directly effects LOXL2, and

also effects it indirectly through VEGFC.

The network also identifies resistance markers that have no incoming edges, but many

outgoing edges. Example of such markers can be seen in NRG1 and RUNX2. Results

show that all edges coming into EGRF have very small φ-mixing coefficients (φ < 0.05)

that are not significant. However, we find some weak but significant edges from EGFR

to WNT5A, and JUN (φ ≈ 0.15). These weak edges were not shown in the network as

they are below the cutoff of 0.18. A similar result is seen for PDGFRB, where there are

no incoming edges but multiple weak outgoing edges to other genes. In summary, these

results suggest that a few key markers (NRG1, RUNX2, EGFR, PDGFRB) maybe the

first upstream regulators that drive much of the dependent rare-cell expression seen in

the data.
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Algorithm implementation

We implement the phixer algorithm for binary data in a m-file script called binPhix using

MatLab R©. The script requires as input a text file which includes binary single-cell gene

expression measurements. The first row of this file should be a list of n strings (separated

by commas) representing the names of the genes being measured. Each additional

row contains the expression level of these n genes (separated by commas) within an

individual cell. This expression level maybe 0 (unexpressed gene) or 1 (expressed gene).

Additionally, a threshold (thr parameter in the script) value between 0 and 1 is required

to perform step 3 of the phixer algorithm.

binPhix computes the three steps described in the phixer algorithm section. The output

of the script is a n × n matrix representing the φ matrix. Each entry corresponds to

a φ (Xi|Xk) value, which represents the weight of the influence of gene in column k on

gene in row i. To construct the inferred network, binPhix requires the biograph function.

This function uses the φ matrix and the list of gene names to create a directed graph

with n vertices, each one representing a gene. Biograph also creates an edge for each

non zero φ (Xi|Xk) value in the φ matrix. The edge represents the influence of gene k

(kth column) on the gene in row i (ith row).

Please be aware that binPhix will be unable to construct the graph if the bioinformatics

toolbox in not present in the MatLab R© version used. When the bioinformatics toolbox

is missing, binPhix will not display the graph. Alternative, the script will generate

a text file called net.txt. This file includes the list of all edges (and their respective

φ (Xi|Xk) value) in the inferred network. Each line in the file corresponds to a single

edge. Each edge is a string in the form "gene k -> gene i", meaning that the gene k

influences gene i. This string will be followed by its correspondent φ (Xi|Xk) value.

Results shown were obtained using a computer with 8 GB RAM and four 3.4 GHz cores.

We include a folder with the binPhix script and a text file. The text file contains the

single-cell measurements of the undrugged melanoma cancer cells used in the inference

of the network shown in previous sections.
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